苹果螺爆缸

苹果螺爆缸

中文学名: 平角卷螺
拉丁学名: Planorbarius corneus var
别 称: 苹果螺,金宝螺、大瓶螺
二名法:Planorbarius corneus
界 :动物界
门: 软体动物门
纲 :腹足纲
亚 纲: 肺螺亚纲
目: 基眼目
科: 扁卷螺科
属: 扁卷螺属
分布区域: 非洲、美洲地区
食 物: 藻类

苹果螺爆缸怎么办

1、有专门针对螺的一些药物,但是注意你鱼缸内是否有水草或者虾、不耐药的鱼等。如果下药治螺一定要注意!这个我不推荐,因为感觉很难根除还容易波及到其他生物
2、翻缸
有些太过折腾,但是也是无奈之举。很多我认识的朋友都是因为螺爆缸翻缸了。但是一定要注意,缸壁要刷干净最好用高锰酸钾消毒,还有沉木石头水草都要认真清理。沉木或石头如果有必要得煮一下才能根除。
3、下生物
针对爆缸的螺类,有些生物是吃苹果螺的。比如锦鲤,当然这个不适合一般的鱼缸。杀手螺,专吃各种螺类,但是我养过感觉效率比较一般。巧克力娃娃,传说中的螺类杀手,据说有人螺爆缸,下了巧克力娃娃以后2个月,再也看不到任何螺了。
杀手螺不多说,巧克力娃娃比较麻烦,首先这个鱼很小很萌,但是别被骗了。在很多人缸里面都有流氓之称,首先倒霉的是鱼缸里面所有的螺和虾。在没有食物的情况下,只有白瓜子大小的他们会攻击其他鱼类,虽然一般咬不死,但是会攻击鱼鳍等一些边角位置,造成其他鱼的损失。

苹果螺简介

苹果螺科雌雄同体动物,只要一只达到年龄和适宜的环境即可单体繁殖,主要分布在非洲、美洲地区。其肺/鳃使它们能忍耐缺氧水,旱季时会自埋在底层土,紧关起壳来休眠。除了抗旱,鳃盖也是防身之器。南美Pomacea,有呼吸管——肺,当要换气时,螺在水面下呼吸空气避免鸟类攻击。
在国外各大宠物店卖的苹果螺 英文名叫 Apple Snail, 而 Ramshorn Snai 又被外籍华人叫做鹦鹉螺 或扁平螺
苹果螺是由德国渔场人工选育出来的水族用螺类。原种为产自欧洲到中亚一带的平角卷螺Planorbariuscorneus,野生个体肉体颜色多呈灰黑色,呈现出红色是由于缺少皮肤色素的变异,从而显示出其血液的颜色,其螺壳本身为淡黄色。有趣的是这种螺血液也有可能呈蓝色,因此现在苹果螺也有了许多不同的颜色。苹果螺的壳是左旋的,壳的最大直径可达2.5厘米左右。该品种是直接呼吸空气的螺类,因此壳口敞开,没有口盖,仅有一对触角,其基部有能分辨明暗的眼点。其卵是很好的鱼虾饲料。

分布地区

国内分布于台湾,西沙群岛。广布于印度—西太平洋暖水区,日本,菲律宾,新加坡,印度尼西亚,澳大利亚(北部),萨摩亚,夏威夷群岛,社会群岛,新喀里多尼亚岛及印度。
苹果螺科雌雄异体动物,主要分布在非洲、美洲地区。其肺/鳃使它们能忍耐缺氧水,旱季时会自埋在底层土,紧关起壳来休眠。除了抗旱,鳃盖也是防身之器。南美Pomacea,有呼吸管——肺要换气时,螺在水面下呼吸空气避免鸟类攻击。

形态特征

苹果螺没耳朵,是全聋的。
它们能“看见”它们的环境,但视力仅够分辨明暗。
苹果螺对水质不要求,它们比大部分的鱼更能在恶劣环境中生存。可是螺需要钙质来造壳,喜欢硬水 (pH 高於7)。 若水软(低钙),可添加石灰石、 贝壳粉。
苹果螺是由德国渔场人工选育出来的水族用螺类。原种为产自欧洲到中亚一带的平角卷螺Planorbariuscorneus,野生个体肉体颜色多呈灰黑色,呈现出红色是由于缺少皮肤色素的变异,从而显示出其血液的颜色,其螺壳本身为淡黄色。有趣的是这种螺血液也有可能呈蓝色,因此现在苹果螺也有了许多不同的颜色。
苹果螺的壳是左旋的,壳的最大直径可达2.5厘米左右。该品种是直接呼吸空气的螺类,因此壳口敞开,没有口盖,仅有一对触角,其基部有能分辨明暗的眼点。

生活习性

环境
野生的苹果螺生活在水流缓慢、水藻丰富、富含钙质的水塘中。
苹果螺适应能力较强,但想要其生长良好并大量繁殖,水质不能过酸,并且有藻类供其食用。其肺/鳃使它们能忍耐缺氧水,旱季时会自埋在底层土,紧关起壳来休眠。除了抗旱,鳃盖也是防身之器。南美Pomacea,有呼吸管──肺要换气时,螺在水面下呼吸空气避免鸟类攻击。苹果螺没耳朵,是全聋的。它们“看见”它们的环境,但视力仅够分辨明暗。
不宜与苹果螺混养的包括食螺性鱼类(如巧克力娃娃)和螺类(如杀手螺)以及龙虾,鳅类等。小螺也有可能被水晶虾一类的小型虾吃掉。
繁殖
并非螺都是雌雄同体,苹果螺是有性别的。苹果螺属于雌雄同体的软体生物,幼年为雌雄同体,长大后就可以分辨。
只要有2只苹果螺就能繁殖,其产的卵包裹在无色透明的胶质中,只要水质合适,全年可繁殖,而且极易爆缸。如果繁殖过多可用生物方法(巧克力娃娃、潜水艇等)去处或手除,但要先将同缸小型热带鱼捞出,否则会被一起除掉。若数目过多也可用药物但不推荐。
行动
苹果螺的行动是随着温度的上升,而逐渐活跃的。冬天苹果螺经常一动不动,而季节合适的时候,苹果螺不仅能够贴着缸底和缸壁觅食,还能够让自己的壳里充气,在水中浮动。苹果螺也经常仰面朝天的到水面游动觅食。不过无论何时,螺类的运动速度是快不起来的。
感官
苹果螺的感觉器官不太发达,主要依靠一对触须。而且苹果螺没有闭壳盖,自我保护能力比较差,跟比较凶猛的斗鱼、慈鲷类鱼混养时,触须偶尔会被啄掉。但苹果螺的再生能力很强,只要将它单独饲养一段时间,触须还能长好。

养殖方法

苹果螺对水温、水质等水文条件并不挑剔,只要注意三点:1、苹果螺在水中溶氧量不足的时候,就向上爬到水线处呼吸。2、水中含有刺激性化学物的时候,苹果螺会发黄,一动不动,进一步就死亡。3、苹果螺需要比较硬的水质,帮助发育外壳。因此可以在水中放入一点珊瑚砂或者贝壳。然而水质过硬,苹果螺的螺壳又会发白。
苹果螺的这些特性,可以被利用来监测鱼缸中的水质状况。
苹果螺的食物主要是鱼缸中附着的藻类,它也可以吃鱼缸中残余的观赏鱼饲料。因此在没有藻类的情况下,也很容易人工饲养。
苹果螺是热带螺水温应保持在摄氏18-28度的范围。
当水温增加苹果螺的活动量也增加, 在18度时它们则几乎是不动的状态. 只有在24度或更高温才可观察到它们优雅的行动方式.。温度不只影响它们的活动量, 也是决定它们寿命的重要因素.。高温下, 它们的生命周期(从出生到死亡) 从四年(低温中) 减少到少于一年,其繁殖率则随着水温而增加。

常见品种

苹果螺有许多不同的人工变型,除常见的红苹果螺外,还有蓝苹果螺,豹纹苹果螺,粉色苹果螺等。

贝类

贝类,即软体动物门。是三胚层、两侧对称,具有了真体腔的动物。软体动物的真体腔是由裂腔法形成,也就是中胚层所形成的体腔。但软体动物的真体腔不发达,仅存在于围心腔及生殖腺腔中。软体动物在形态上变化很大,但在结构上都可以分为头、足、内脏囊及外套膜4部分。头位于身体的前端,足位于头后、身体腹面,是由体壁伸出的一个多肌肉质的运动器官,内脏囊位于身体背面,是由柔软的体壁包围着的内脏器官,外套膜是由身体背部的体壁延伸下垂形成的一个或一对膜,外套膜与内脏囊之间的空腔即为外套腔。由外套膜向体表分泌碳酸钙,形成一个或两个外壳包围整个身体,少数种类壳被体壁包围或壳完全消失。这些基本结构在不同的纲中有很大的变化与区别。软体动物具有完整的消化道,出现了呼吸与循环系统,也出现了比原肾更进化的后肾(metanephridium)。软体动物种类繁多,分布广泛。现存的有11万种以上,还有35000化石种,是动物界中仅次于节肢动物的第二大门类。特别是一些软体动物利用“肺”进行呼吸,身体具有调节水分的能力,使软体动物与节肢动物构成了仅有的适合于地面上生活的陆生无脊椎动物。

形态和构造

贝类的身体柔软,左右对称,不分节,由头、斧足、内脏囊、外套膜和贝壳5部分组成。头部生有口、眼和触角等感觉器官。斧足在身体的腹面,由强健的肌肉组成,是爬行、挖掘泥沙或游泳的器官。内脏囊位于身体背部,包括心脏、肾脏、胃、肠、消化腺和生殖腺等内脏器官。外套膜包被于身体的外面,系由内外两层表皮和其间的结缔组织、少许肌肉组成。外套膜的表皮细胞分泌贝壳,外套膜和贝壳都是贝类的保护器官。
贝类的神经系统由脑、足、侧、脏 4对神经节和与其联络的神经构成。脑神经节位于食道的背侧,派出神经至头部和体前部;足神经节位于足的前部,派出神经至足部;侧神经节位于身体前部,派出神经至外套和鳃;脏神经节位于身体之后部,派出神经至内脏诸器官。贝类原始的种类神经系统简单,没有显著的神经节,较进化的种类形成神经节,更进化的种类则是各神经节集中在头部形成“脑”。感觉器官主要有触角、眼、平衡囊、嗅检器等。
消化系统包括口、齿舌食道、胃肠、肛门和附属的消化腺,其中齿舌是贝类比较特殊的舐食和磨碎食物的器官,又是分类的重要根据之一。
贝类靠鳃和肺呼吸。水生的种类有鳃,通常由外套膜内面皮肤伸展形成的,称为本鳃。每一鳃片鳃轴的两侧或一侧生有鳃丝,鳃上生有纤毛。依纤毛的运动使呼吸水流按一定线路通过鳃进行气体交换。有的种类本鳃消失,而用皮肤表面或在皮肤表面形成二次性鳃(后鳃类)进行呼吸。陆生种类外套膜的一部分形成脉网密集的肺室,借以在空气中呼吸。
循环系统一般是开管式的,但在高等的头足类动脉管和静脉管由微血管联络成为闭管式。贝类循环系的中枢为心脏,心脏有1个心室,1个、2个或4个心耳。血液含血青素,一般无色,仅少数种类如双壳类的蚶和腹足类的扁卷螺有血红素,血液为红色。
排泄系统的主要器官为肾脏。肾由具纤毛的肾管形成,一端与围心腔相通,另一端在外套腔中开口。肾脏的数目因种类而异,有6对、2对、1对或仅1个的。除肾脏外,有的种类围绕心腔壁上的腺体或肝脏的一部分也有排泄功能。
生殖系统包括生殖腺、生殖输送管、交接器和一些附属腺体。雌雄异体或雌雄同体。

生物特性

贝类的生活方式因种类而异。陆生种类属于腹足类,都用肌肉健壮的足部在陆地上爬行。
水生的种类生活方式有浮游、游泳、爬行、固着、穿孔和寄生等类型。浮游生活的种类都是随波逐流地在水中过漂浮生活。一般个体较小,贝壳薄或无贝壳,有的种类足特化成鳍,如翼足类(Pteropoda)、异足类(Heteropoda)中的许多种;有的种类足能分泌一个浮囊,携带动物在海洋表面漂浮,如海蜗牛(Janthina)。游泳生活的种类能在海洋中长距离洄游,如头足类中的乌贼、枪乌贼、柔鱼(Ommastrephes)等,它们的足特化成腕和漏斗,胴部两侧生有鳍,靠漏斗喷水和鳍的摆动可迅速平稳地游泳。某些双壳类如扇贝、栉孔扇贝(Chlamys)、日月贝(Amussium)、锉蛤(Lima)等虽不是游泳生活的种,但必要时可凭借贝壳的急剧开合和外套膜触手的作用在海中进行蝶式游泳。大部分水生贝类营底栖生活,或在水底匍匐、爬行,或在底质中挖穴隐居,或附着在其他外物上生活。例如玉螺、泥螺(Bullacta)等在泥沙底爬行,鲍、马蹄螺(Trochus)、蝾螺(Turbo)等在岩石上爬行,一些裸鳃类如海牛(Doris)、淡水中生活的萝卜螺(Radix)、扁卷螺(Planorbis)等都在水生植物上爬行。它们的足部肌肉特别发达,蹠面广平,适于爬行。很多底栖贝类营埋栖生活,大部分的双壳类属于这种类型。它们的足部肌肉发达,呈斧刃状,适于在泥沙滩挖掘泥沙将身体全部埋藏于底下生活,如帘蛤(Venus)、樱蛤(Tellina)、竹蛏(Solen)、海螂(Mya)等等,它们靠发达的入水管和出水管与底表交通以摄食和呼吸。有些底栖贝类营附着生活,像贻贝、扇贝、不等蛤(Anomia)等,足部能分泌足丝,用以附着在岩石、珊瑚礁、其他贝壳或物体上生活。牡蛎、猿头蛤(Chama)、海菊蛤(Spondylus)等则以一扇贝壳固着在外物上生活,这些种类在固着后一般不再移动。有些底栖贝类在岩石、珊瑚礁、贝壳、竹木等外物上穿孔穴居,亦称穿孔生物,如石蛏(Lithophaga),海笋科(Pholadidae)中的一些种、钻岩蛤(Saxicava)、船蛆(Teredo)、马特海笋(Martesia)、食木海笋(Xylo-phaga)等,都靠发达的水管与洞外交通,汲取海水进行呼吸及摄取水中的微小生物和有机碎屑等作为食料。贝类中也有营寄生生活的。外寄生的如圆柱螺(Stilifer),寄生在棘皮动物腕的步带沟中;内寄生的如内壳螺(Entovalva)寄生于锚海参的食道内。
贝类的繁殖方式也因种类而不同。单板纲、多板纲、掘足纲、头足纲和绝大多数的前鳃类都是雌雄异体,后鳃类、无板纲、前鳃类和双壳类的很少一部分以及全部肺螺类都是雌雄同体。也有一些种类有性转变,如某些种的牡蛎、船蛆和帆螺(Calyptraea)等。雌雄异体的种类有的是通过交配受精,有的是将精、卵分别排放在水中或母体的鳃腔或“子宫”中受精。雌雄同体的种类两个个体互相受精,有些种类许多个体连成一列交配,第一个个体只起雌性作用,最后一个个体只起雄性作用,中间的个体既起雌性也起雄性作用,如无角螺(Acera)、海兔(Aplysia)等。产卵有的是成粒分散产出,有的是卵子包在卵鞘里,许多卵鞘粘连在一起形成卵群。卵群形状,构造因种类而异,如玉螺(Natica)卵与泥沙粘合成领状,红螺(Rapana)的卵鞘呈花瓣状,连在一起很象菊花;海兔的卵群呈粉丝状,俗称海粉。乌贼的卵每一粒包在1个圆形的胶囊中,连在一起很象一串串葡萄。贝类的产卵数量因它在受精和孵化过程中受到保护的情况而有很大差别,一些将卵产生在水中受精孵化的种类,产卵量特别高,如卵生型的美洲牡蛎(Crassostrea virgnica)产卵几千万至1亿以上。幼生型的食用牡蛎(Ostrea edulis)则仅产数十万至 100万粒。一种湾锦蛤(Nucula)能把卵子保护在一个附于其贝壳后的几丁质囊中,卵仅产20~70粒。原始腹足类将卵直接产在海水中受精,产卵数量多,如鲍可产10万以上,而卵子产于“子宫”中受精孵化的种类如田螺(Viviparus)仅产数十粒,螺蛳(Margarya)则仅产3~5个。贝类中有一些种类一周年即达到性成熟,寿命只有1年,如裸鳃类和头足类中的一些种。有一些种类寿命较长,但大多也是1年达性成熟。生长的速度随种类和环境条件不同而异。温度适宜,饵料充足则生长快,反之则生长慢。贝类的寿命以双壳类为最高,贻贝和海螂(Mya arenaria)能活10年,马氏珠母贝(Pinctadamartensi)可活12年,蚌类的寿命较长,珍珠蚌(Margari-tana margaritifera)能活80年,砗磲(Tridacna)甚至可活1个世纪。
贝类的摄食方式有捕食和滤食之分。捕食性种类又可分为草食性和肉食性。许多原始性腹足类如鲍、马蹄螺、笠贝等和许多肺螺类,如椎实螺 (Lymnaea)、蜗牛、烟管螺 (Clausilia)等都是草食性。中腹足目中的一些有水管的种类,如凤螺(Strombus)和新腹足目中的种类大多为肉食性的,它们有的摄食动物的尸体,有的吃水螅、环虫、双壳类、蟹类、鱼类等食物。头足类也都为肉食性,它们捕食双壳类、蟹类,甚至追逐鱼群捕食鱼类。双壳类绝大多数是滤食性的。

种群分布

主要分布在海洋中,有极少部分种群生活在淡水湖泊中。

生理特点

消化:在原始的沉积取食的种类,食物的消化及消化道的结构仍保持原软体动物的形态与机能。例如原鳃类的胃壁很薄,其中仍保留胃楯、晶杆等结构,食物在胃内行胞外消化,在消化盲囊中行胞内消化及吸收。在高等的过滤取食的种类,消化道口周围没有触手。胃壁上胃楯及筛选区均不发达,而晶杆囊发达、突出胃壁之外。囊中有粘液分泌物经固化形成晶杆,晶杆上吸附有消化酶(淀粉酶、脂肪酶),囊壁内的纤毛作用使晶杆不停的旋转,晶杆顶端被溶解释放出消化酶,进行胞外消化,晶杆的旋转也起了混合食物与酶的作用。晶杆顶端被食物不断的磨损,后端可不断地被补充,晶杆的旋转也使微小的食物颗粒进入胃盲囊进行胞内消化及吸收。不能消化的食物残渣经过肠、肛门、出水孔排到体外。食物在消化道内进行一个缓慢的但连续不断的食物流是瓣鳃类过滤取食者所特有。隔鳃类为肉食性动物,其肌肉质的胃壁被几丁质包围,形成一个磨胃,其晶杆不发达,成小棍状伸向胃内,具有较发达的消化酶。
循环与气体交换:双壳类动物均为开放式循环,围心腔位于身体的背面,围心腔中有一个心室、两个心耳,心室与心耳之间有瓣膜,防止血液逆流。在原鳃类及丝鳃类由心室仅向前通出前大动脉,如贻贝,在瓣鳃类除前大动脉之外,由心室还向后通出后大动脉,如河蚌。血液由动脉流出后,经分支到身体前端、足及内脏等,到组织中形成血窦,经血窦后汇集成血管经过肾脏、鳃之后再流回心耳与心室。鳃是其主要的气体交换场所,当水流经过时,被鳃所摄取的氧量比其他软体动物少,这可能与鳃的表面积较其他软体动物大有关。此外,所有的双壳纲动物都有或多或少发达的外套循环,血液由动脉流出后,直接到外套膜中形成血窦,由血窦汇集成血管后或直接流回心耳,或经过肾脏排出代谢产物后再流回心耳。外套循环也是气体交换的辅助场所。大多数双壳纲动物的血液中不存在呼吸色素,只有极少数种类如蚶、锉蛤(Lima)等具有血红素,它使外套膜等组织表现出红色。隔鳃类鳃已消失,气体的交换完全由外套膜进行。
排泄: 双壳类的排泄系统为一对后肾,位于围心腔腹面。肾脏成一长管状,但内肾口开口在围心腔前端,外肾孔开口在出水流内肾口的下方,所以肾的后端折回,肾的前半部分内有腺体称腺体部,在此进行废物的过滤作用,其后为膀胱部分,为代谢物的贮存处,原鳃类的肾脏没有腺体部与膀胱部之区分。淡水种类的肾脏具盐分的重吸收作用,因此排出的尿液是低渗的。
神经与感官:双壳纲动物的神经系统比较简单,原始的种类具有脑、侧、足、胜4对神经节,较进化的种类、脑、侧神经节合并,所以只有3对神经节,脑侧神经节位于食道两侧,它控制着前闭壳肌及协调足、壳的运动。脏神经节位于后闭壳肌肌柱上,它控制内脏及后闭壳肌的收缩,足神经节位于足前端肌肉内,控制足的运动,此外在脑侧神经节与脏神经节之间,脑侧神经节与脑足神经节之间还有两对神经索将神经节联结起来。感官不发达,在一些活动能力较大的种类,例如扇贝,在外套膜缘的中褶皱上有成对的小触手,其中含有触觉及化学感觉细胞,还有许多小眼,小眼的结构较发达,甚至包含了晶体与网膜,可以感受光强度的改变。此外在足神经节周围有一对平衡囊,控制身体的平衡。许多种类在后闭壳肌下或出水口周围有一些感觉上皮,称嗅检器,能感受水质与水流的改变。
经济价值
贝类中绝大多数种均可食用,很多贝类的肉质肥嫩,鲜美可口,营养丰富。头足类中的乌贼、枪乌贼、柔鱼、章鱼 (Octopus)等海洋生物,腹足类中的鲍、凤螺、香螺 (Neptunea)、东风螺(Babylonia)、涡螺(Voluta)、红螺,以及很多陆生的蜗牛等都是捕捞对象,鲍等还是养殖对象。双壳类中的很多种类如蚶科(Arcidae)、扇贝科(Pectinidae)、贻贝科(Mytilidae)、珍珠贝科(Pteriidae)、牡蛎科(Ostreidae)、蛤蜊科(Mactridae)、帘蛤科 (Veneridae)、蚌科(Unionidae)、竹蛏科 (Solenidae)等科中的许多种类资源丰富,已发展为海水养殖的重要对象,产量也极为可观,除鲜食外,还可干制、腌制或罐藏,产品有淡菜(贻贝干)、干贝(扇贝闭壳肌)、蚝豉(牡蛎干)、蛏干、蛤干、墨鱼干、乌贼蛋(乌贼的缠卵腺)和各种贝肉罐头。不少贝类是不可缺少的优良中药材,如珍珠和珍珠层粉、鲍的贝壳石决明、宝贝的贝壳海巴、乌贼的内壳海鳔蛸、蜗牛肉、海兔的卵群等。产量大的小型贝类可作为农田肥料和家禽家畜的饲料。贝壳的主要成分为碳酸钙,是烧制石灰的原料,还可制作油漆的调和剂、贝雕等工艺美术品,而珍珠更是名贵的装饰品。
但贝类对人类也有一定危害。有一些贝类有毒,人类食用或接触后会中毒。有些淡水和陆生的腹足类是人体和家畜寄生虫的中间宿主,如日本血吸虫的幼体寄生在钉螺体内。海洋中的船蛆、海笋等是专门穿凿木材或岩石穴居的种类,对木船、木桩及海港的木、石建筑物为害很大。

腹足纲

腹足纲(Gastropoda)通称螺类。是软体动物中最大的一纲,包括有75000生存种及15000化石种。腹足纲动物的分布也很广泛,在海洋中从远洋漂浮生活的种类到不同深度及不同性质的海底,各种淡水水域都有它们的分布。特别是腹足纲的肺螺类是真正征服陆地环境的种类,可以在地面上生活,腹足纲是软体动物中最繁盛的一类。腹足纲动物具有明显的头部,体外有一枚螺旋卷曲的贝壳。头、足、内脏囊、外套膜均可缩入壳内。发育过程中,身体经过扭转(torsion),致使神经扭成了“8”字形,内脏器官也失去了对称性。一些种类在发育中经过扭转之后又经过反扭转,神经不再成“8”形,但在扭转中失去的器官不再发生,身体的内脏仍然失去了对称性。包括前鳃亚纲(Prosobranchia)、后鳃亚纲(Opisthobr-anchia)及肺螺亚纲(Pulmonata)3个亚纲。

发展历史

从寒武纪早期的地层中的某些腹足类动物其贝壳也是对称的,例如一种化石腹足类Strepsodiscus壳对称呈平面盘旋。以后人们在研究了腹足类的胚胎发育后也发现,腹足类的担轮幼虫也是对称的,而到了面盘幼虫后,身体突然出现扭转,随后是一个不对称的生长过程,最后成体变成了不对称的体制。因此,从比较形态学、古动物学及发生学的研究都证明了腹足类动物早期的体制还是两侧对称的,而以后大多数种类的不对称是在进化过程中形成的。那么在进化过程中腹足类是怎样形成了不对称的体制呢?人们推测腹足类动物也是由原软体动物一样的祖先进化而来,首先这种祖先动物由于体积的增加及头、足经常缩入壳下,使内脏囊得到了充分的发展并不断地在身体背部隆起,结果由内脏囊顶端悬垂下来的外套膜及由外套膜分泌的贝壳都随内脏囊的隆起而增加高度,使身体背部及贝壳成为长圆锥形,这种体形不利于动物在水中的运动及生存,于是逐渐地出现了由内脏囊的顶端开始做平面盘旋(coiling),后形成的外壳包围了先形成的外壳,这时壳与内脏囊仍是对称的,正如在早期地层中发现的化石种类壳是平面盘旋的那样。但这种平面盘旋使壳的直径很大,壳内的空间却很小,壳也不牢固,所以后期出现的壳不再是平面盘旋,而是沿一中心轴由上向下螺旋盘旋。这样的螺旋壳的直径减少,壳内容积不变,但壳的牢度增加,壳又成为矮圆锥形,同时壳轴不再是垂直于身体的长轴,而是倾斜于身体长轴,使增大的内脏囊的重心移到了近前端以有利于运动。壳的螺旋盘旋或许说明了腹足类所以只有一对鳃、一对肾及一对收缩肌的原因。

软体动物门

软体动物(Mollusca)是三胚层、两侧对称,具有了真体腔的动物。软体动物的真体腔是由裂腔法形成,也就是中胚层所形成的体腔。但软体动物的真体腔不发达,仅存在于围心腔及生殖腺腔中。软体动物在形态上变化很大,但在结构上都可以分为头、足、内脏囊及外套膜4部分。头位于身体的前端,足位于头后、身体腹面,是由体壁伸出的一个多肌肉质的运动器官,内脏囊位于身体背面,是由柔软的体壁包围着的内脏器官,外套膜是由身体背部的体壁延伸下垂形成的一个或一对膜,外套膜与内脏囊之间的空腔即为外套腔。由外套膜向体表分泌碳酸钙,形成一个或两个外壳包围整个身体,少数种类壳被体壁包围或壳完全消失。这些基本结构在不同的纲中有很大的变化与区别。软体动物具有完整的消化道,出现了呼吸与循环系统,也出现了比原肾更进化的后肾(metanephridium)。软体动物种类繁多,分布广泛。现存的有11万种以上,还有35000化石种,是动物界中仅次于节肢动物的第二大门类。特别是一些软体动物利用“肺”进行呼吸,身体具有调节水分的能力,使软体动物与节肢动物构成了仅有的适合于地面上生活的陆生无脊椎动物。

物种进化

软体动物的海产种类个体发生中为螺旋型卵裂,且具有担轮幼虫,排泄器官为后肾管,这些特点均与环节动物尤其是多毛类近似。故有理由认为软体动物和环节动物在系统发生中有着共同的起源,在长期进化中,朝着不活动的生活方式发展,因而体节消失,产生了贝壳,运动器官和神经感官均趋于退化。软体动物中单板纲、无板纲及多板纲较为原始,这几类的次生体腔发达,近似梯式神经;有的体呈蠕虫形,无壳,许多器官如鳃、肾、外壳等显不出分节排列现象。这些原始性状的存在认为它们接近软体动物的原始祖先,各自独立发展一支。
腹足类较为原始,其生活方式活跃,头部发达。瓣鳃纲生活方式不活动无头,但原始种类具盾鳃,足部具趾面,这与腹足纲接近。掘足纲头不明显,套膜在胚胎时为2片,后才愈合呈筒状,成对的肾,脑神经节与侧神经节分开,这些表明接近于原始的瓣鳃类、但掘足类无鳃,无心脏,贝壳筒形,又显示与其他纲动物在演化上较为疏远,可能是较早分出的一支。头足纲为一古老的类群,起源早,化石种类多。它们生殖腔与体腔相通,似无板纲;个体发生中在胚胎早期无肾,似多板纲和无板纲;生殖导管来源于体腔导管又似多板纲。由于头足纲其有原始软体动物的特点说明它们与软体动物的原始种类接近。但头足纲有机结构,复杂神经系统高度集中,且为软骨质包围;眼的结构似脊椎动物,基本为闭管式循环系统;直接发生,无幼虫期。由于头足纲既有原始性状,又有高度的进化特征,故推测它们可能很早分出的一支,沿着更为活跃的生活方式发展的一个独立的分支。

外形特征

头部
位于身体前端。一些行动迟缓的原始种类头部不发达,仅有口,与身体没有明显的界限,如石鳖等;一些穴居或固着生活的种类体躯完全包被于外套膜和贝壳之内,头部退化,如蚌类、牡蛎等;一些比较进化、运动敏捷的种类头部发达,分化明显,生有触角和眼等感觉器官,如田螺、蜗牛及乌贼等。
足部
足部是位于身体腹侧的运动器官,随生活方式不同呈现不同形式:有的种类足部蹠面平滑,适于在陆地或水底爬行,如腹足纲;有的种类足部呈斧刃状,有利于挖掘泥沙,如瓣鳃纲;有些固着生活的种类足退化,如牡蛎科;也有些种类足部萎缩,失去了运动功能,但有足丝腺,能分泌足丝,用以附着在外物上生活,如贻贝科、扇贝科等。在头足纲,足生于头部,有的特化成腕,上面生有许多吸盘,为捕食器官,并有一部分变态成漏斗,适于游泳生活,如乌贼和章鱼等。少数种类足的侧部(即侧足,parapodium)特化成片状,可游泳,称为翼或鳍,如翼足目(Pteropoda)。足部通常生有平衡器,有些种类在足的上部生有许多触手。

生长繁殖

软体动物的生殖系统由生殖腺、生殖输送管、交接器和一些附属腺体构成。生殖腺由体腔壁形成。生殖输送管内端通向生殖腺腔,外端开口于外套腔或直接开口于体外。软体动物有雌雄异体和雌雄同体之分。雌雄异体的种类包括多板纲、绝大多数的前鳃亚纲和瓣鳃纲、头足纲等,它们有的通过交尾受精,有的将生殖产物分别排到水中受精。雌雄同体的种类包括无板纲、后鳃亚纲、肺螺亚纲以及少数的前鳃类和瓣鳃纲,它们大多通过交尾受精。
软体动物的受精卵是典型的螺旋型卵裂,由外包或内陷或由二者形成原肠胚,原肠胚形成后,很快发育为自由游泳的担轮幼虫。个别种类从担轮幼虫直接发育成成体,但大多数种类从担轮幼虫发育成面盘幼虫(veliger larva),然后才发育成成体。担轮幼虫的形态与环节动物多毛类的幼虫近似,面盘幼虫发育早期背侧有外套的原基,且分泌外壳,腹侧有足的原基,口前纤毛环发育成缘膜(velum)或称面盘。大多数的海产腹足类的担轮幼虫在卵袋中度过,一些前鳃类和淡水腹足类、肺螺类的担轮幼虫和面盘幼虫都在卵袋中度过。在淡水中生活的蚌类,面盘幼虫特化为适应寄生生活的钩介幼虫(glochidium),这种幼虫在鱼类的鳃、鳍或其他部位寄生,在鱼体上形成胞囊。幼虫从寄主身体获取营养,逐渐发育成成体,破囊而出,沉落水底营底栖生活。头足纲的卵子分裂属子不完全分裂的盘状分裂类型,为直接发育。